Sabtu, 26 November 2022

 

  1. Titik sumbu y (x = 0)
  2. Asimtot datar {\displaystyle y={\frac {a}{p}}}
  3. Asimtot tegak penyebut = 0 dengan cari x
  4. Harga Ekstrem/Titik balik

{\displaystyle y={\frac {ax^{2}+bx+c}{px^{2}+qx+r}}} diubah menjadi {\displaystyle (yp-a)x^{2}+(yq-b)x+(yr-c)=0} lalu cari y dengan menggunakan diskriminan ({\displaystyle D=b^{2}-4ac}) lalu cari x dengan menggunakan ({\displaystyle x=-{\frac {b}{2a}}})

  1. Titik potong dengan asimtot datar untuk mencari x dimana y adalah asimtot datar
  2. Titik-titik lain

Komposisi fungsi

Contoh

  • Tentukan {\displaystyle f(x)\circ g(x)} dan {\displaystyle g(x)\circ f(x)} dari {\displaystyle f(x)=2x+3} dan {\displaystyle g(x)=4x+7}!
{\displaystyle f(x)\circ g(x)=f(g(x))}
{\displaystyle f(g(x))=f(4x+7)}
{\displaystyle f(g(x))=2(4x+7)+3}
{\displaystyle f(g(x))=8x+17}
{\displaystyle g(x)\circ f(x)=g(f(x))}
{\displaystyle g(f(x))=g(2x+3)}
{\displaystyle g(f(x))=4(2x+3)+7}
{\displaystyle g(f(x))=8x+19}
  • Tentukan {\displaystyle f(x)} dari {\displaystyle g(x)=4x+7}
{\displaystyle f(g(x))=8x+17}!
{\displaystyle g(f(x))=8x+19}!

a

{\displaystyle f(g(x))=8x+17}
{\displaystyle f(4x+7)=8x+17}
{\displaystyle f({\frac {4x+7-7}{4}})=8({\frac {x-7}{4}})+17}
{\displaystyle f(x)=2x-14+17}
{\displaystyle f(x)=2x+3}

b

{\displaystyle g(f(x))=8x+19}
{\displaystyle 4f(x)+7=8x+19}
{\displaystyle {\frac {4f(x)+7-7}{4}}={\frac {8x+19-7}{4}}}
{\displaystyle f(x)=2x+3}
  • Tentukan {\displaystyle f(x)\circ g(x)} dan {\displaystyle g(x)\circ f(x)} dari {\displaystyle f(x)=5x+3} dan {\displaystyle g(x)=x^{2}+4x+7}!
{\displaystyle f(x)\circ g(x)=f(g(x))}
{\displaystyle f(g(x))=f(x^{2}+4x+7)}
{\displaystyle f(g(x))=5(x^{2}+4x+7)+3}

Leave a Reply

Subscribe to Posts | Subscribe to Comments

- Copyright © Senang belajar online - Blogger Templates - Powered by Blogger - Designed by Johanes Djogan -